载阿齐他赛聚乙二醇单甲醚-聚乳酸双嵌段共聚物纳米胶束的制备、表征及体外抗肿瘤活性的研究

陈丽青,黄伟,高钟镐 ,方唯硕,金明姬

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (19) : 1688-1695.

PDF(1446 KB)
PDF(1446 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (19) : 1688-1695. DOI: 10.11669/cpj.2015.19.009
论著

载阿齐他赛聚乙二醇单甲醚-聚乳酸双嵌段共聚物纳米胶束的制备、表征及体外抗肿瘤活性的研究

  • 陈丽青a,b,黄伟a,b*,高钟镐a,b* ,方唯硕a,c,金明姬a,b
作者信息 +

Preparation, Pharmaceutical Characterization and in Vitro Anti-tumor Effects of Aziditaxel-loaded mPEG-PLA Micelles

  • CHEN Li-qinga,b, HUANG Weia,b*, GAO Zhong-gaoa,b*, FANG Wei-shuoa,c, JIN Ming-jia,b
Author information +
文章历史 +

摘要

目的 制备阿齐他赛聚乙二醇单甲醚-聚乳酸双嵌段共聚物(mPEG-PLA)聚合物胶束,考察载药胶束的理化性质并研究其体外抗肿瘤活性。方法 采用薄膜分散法制备阿齐他赛聚乙二醇单甲醚-聚乳酸双嵌段共聚物聚合物胶束,透射电镜观察载药胶束的形态,激光粒度分析仪测定载药胶束的粒径和Zeta电位,考察载药胶束的工艺重现性和复溶稳定性,HPLC测定胶束载药量和包封率,透析法考察载药胶束的体外释放行为,并对释放曲线进行数学模型拟合,增殖抑制实验和周期阻滞实验评价其体外抗MCF-7肿瘤细胞活性。结果 本实验成功制备了阿齐他赛聚合物胶束,其外观形态呈球形,粒径为24.50 nm,粒径多分散指数为0.117,Zeta电位为-10.06 mV,载药量为(16.00±0.15)%,包封率为(95.80±0.10)%,制备工艺重现性良好,载药胶束冻干制剂复溶后6 h之内保持稳定,载药胶束体外释放行为符合双相动力学模型,载药胶束在体外能明显抑制MCF-7乳腺癌细胞的增殖,并诱导MCF-7细胞产生明显的G2/M周期阻滞和细胞凋亡。结论 本实验制备了阿齐他赛聚乙二醇单甲醚-聚乳酸双嵌段共聚物聚合物胶束,胶束制备工艺简单,理化性质符合后续研究要求,在体外显示了良好的抗肿瘤作用,具有良好应用前景。

Abstract

OBJECTIVE To prepare aziditaxel-loaded mPEG-PLA polymeric micelles, investigate its pharmaceutical characteristics and study its anti-tumor effects in vitro. METHODS Aziditaxel-loaded polymeric micelles were prepared by thin-film dispersion method. The morphology of aziditaxel-loaded micelles was observed under transmission electron microscope. The particle size distribution and Zeta potential of aziditaxel-loaded micelles were determined by dynamic light scattering method using a Malvern Zetasizer Nano ZS90 analyzer. The technical reproducibility and reconstitution stability of aziditaxel-loaded micelles were also checked. The drug loading and encapsulation efficiency were measured by HPLC. Dialysis method was used to investigate the in vitro release of aziditaxel-loaded micelles, and the release manner was fitted using the mathematic models. The in vitro anti-tumor activities were evaluated by proliferation inhibition and cycle block experiment. RESULTS Aziditaxel-loaded polymeric micelles were prepared successfully. Aziditaxel-loaded polymeric micelles showed spherical shape with a mean particle size of 24.50 nm, polydispersity index of 0.117 and Zeta potential of -10.06 mV. The mean drug loading and entrapment efficiency were (16.00±0.15)% and (95.80±0.10)%, respectively. The preparation reproducibility was fine, and the reconstitution solution of lyophilized preparation of aziditaxel-loaded polymeric micelles maintained stable within 6 h. The release behavior of aziditaxel-loaded micelles conformed to the ambiexponent model. Drug-loaded micelles could obviously inhibit the proliferation of MCF-7 breast cancer cell lines in vitro, and induce significant G2/M cycle arrest and apoptosis on MCF-7 cancer cells. CONCLUSION Aziditaxel-loaded mPEG-PLA polymeric micelles are successfully prepared. The preparation method is simple, and the pharmaceutical properties of the products conform to the requirements of the subsequent study. The prepared aziditaxel-loaded polymeric micelles exhibit good application prospect with favourable in vitro anti-tumor activities.

关键词

阿齐他赛 / 胶束 / 载药量 / 释放 / 模型 / 抗肿瘤活性

Key words

aziditaxel / micelle / drug loading / release / model / anti-tumor activity

引用本文

导出引用
陈丽青,黄伟,高钟镐 ,方唯硕,金明姬. 载阿齐他赛聚乙二醇单甲醚-聚乳酸双嵌段共聚物纳米胶束的制备、表征及体外抗肿瘤活性的研究[J]. 中国药学杂志, 2015, 50(19): 1688-1695 https://doi.org/10.11669/cpj.2015.19.009
CHEN Li-qing, HUANG Wei, GAO Zhong-gao, FANG Wei-shuo, JIN Ming-ji. Preparation, Pharmaceutical Characterization and in Vitro Anti-tumor Effects of Aziditaxel-loaded mPEG-PLA Micelles[J]. Chinese Pharmaceutical Journal, 2015, 50(19): 1688-1695 https://doi.org/10.11669/cpj.2015.19.009
中图分类号: R944   

参考文献

[1] MEKHAIL T M, MARKMAN M. Paclitaxel in cancer therapy[J]. Expert Opin Pharmacother, 2002, 3(6): 755-766.
[2] WANG H B, LI H Y, ZUO M X, et al. LX2-32C, a novel taxane and its anti-tumor activities in vitro and in vivo[J]. Cancer Lett, 2008, 268(1): 89-97.
[3] ZHOU Q, LI Y, JIN J,et al. LX2-32C, a novel taxane derivative, exerts anti-resistance activity by initiating intrinsic apoptosis pathway in vitro and inhibits the growth of resistant tumor in vivo[J]. Biol Pharm Bull, 2012, 35(12): 2170 -2179.
[4] GELDERBLOM H, VERWEIJ J, NOOTER K, et al. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation[J].Eur J Cancer, 2001, 37(13): 1590-1598.
[5] SPARREBOOM A, VAN ZUYLEN L, BROUWER E,et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood: Clinical pharmacokinetic implications[J]. Cancer Res,1999, 59(7): 1454-1457.
[6] TEN TIJE A J,VERWEIJ J,LOOS W J,et al. Pharmacological effects of formulation vehicles: Implications for cancer chemotherapy[J]. Clin Pharmacokinet, 2003, 42(7): 665-685.
[7] BAKER J, AJANI J,SCOTTF, et al. Docetaxel-related side effects and their management[J]. Eur J Oncol Nurs, 2009, 13(1): 49-59.
[8] PEER D, KARP J M, HONG S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nat Nanotechnol, 2007, 2(12): 751-760.
[9] TONG R, CHENG J J. Anticancer polymeric nanomedicines[J]. Polymer Rev, 2007, 47(3): 345-381.
[10] KIM T Y, KIM D W, CHUNG J Y, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies[J]. Clin Cancer Res, 2004, 10(11): 3708-3716.
[11] LEE K S , CHUNG H C, IM S A, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer[J]. Breast Cancer Res Treat, 2008, 108(2): 241-250.
[12] LI Y F, YANG F F, CHEN W, et al. A novel monomethoxy polyethylene glycol-polylactic acid polymeric micelles with higher loading capacity for docetaxel and well reconstitution characteristics and its anti-metastasis study[J]. Chem Pharm Bull, 2012, 60(9): 1146-1154.
[13] GAUCHER G, DUFRESNE M H, SANT V P, et al. Block copolymer micelles: Preparation, characterization and application in drug delivery[J]. J Controlled Release, 2005, 109(1-3): 169-188.
[14] ZHANG X C, JACKSON J K, BURT H M. Development of amphiphilic diblock copolymers as micellar carriers of taxol[J]. Int J Pharm, 1996, 132(1-2): 195-206.
[15] PANYAM J,LABHASETWAR V. Targeting intracellular targets[J]. Curr Drug Deliv, 2004,1(3):235-247.
[16] BURT H M, ZHANG X C, TOLEIKIS P,et al. Development of copolymers of poly(d,l-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel[J]. Colloids Surf B: Biointerfaces, 1999, 16(1-4): 161-171.
[17] MU L, TEO M M, NING H Z, et al. Novel powder formulations for controlled delivery of poorly soluble anticancer drug: Application and investigation of TPGS and PEG in spray-dried particulate system[J]. J Controlled Release, 2005, 103(3):565-575.

基金

国家“重大新药创制”科技重大专项资助项目(2012ZX09301002-001-008)
PDF(1446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/